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ABSTRACT

Design of experiments for estimation of parameters in non-linear models

is studied in a Bayesian framework, with the objective of maximization of the

anticipated Fisher information. Two stage optimal designs are proposed in

attribute life testing situations.

I. Introduction

Consider a system of N components working independently and having

identical cumulative distribution functions (c.d.f.) of the time till failure

F(t;O). F is a known function and 0 is an unknown parameter belonging to a

parameter space 0. It is assumed that the number of components, N, is a fixed

positive integer. The components fail randomly at unobservable times. We

inspect the system after x units of time and count the number of failed compon-

ents. The replacement of the components could follow one of the following two

policies:

(A) Only failed compcrrents are replaced at each inspection.

(B) All items in the system are replaced at each inspection (frequent
replacement policy, or block replacement policy).

* (*)Part of the Ph.D. thesis in department of Mathematics and Statistics,

Case Western Reserve University, Cleveland, Ohio. Supported by ONR

Contract N00014-80-C-0325 (NR 042-276) at Virginia Polytechnic Institute

and State University
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The policy to ascribe depends upon the type of system under consideration.

For example, policy (B) is preferred when it costs more to inspect and change

only failed components as compared to changing the whole system. Such examples

are encountered in the replacement of street light bulbs, etc. Sometimes it is

practically impossible to change only the failed components without effecting

the whole system. Systems composed of transistors built in modules.

For more applications see Barlow and Proschan (1967). In quantal response

bioassay studies policy (B) is followed, where; after experimentation, the

whole batch of experimental units (mice, fish, etc.) is replaced by a new one.

Finney (1978) gives an exhaustive reference list of bioassay studies of this

kind.

Let J(xl),J(x2 ), ...,J(x ), ... denote the number of components failing
n n-l n

during the intervals (O,xl), (OXl), (xlX 1+x2) . ( E xI, E x.).
1 i=l i=l

Intuitively, we would like to use the information (J(xI) ,.. ,J(xn),X I ..... n

to define x+ 1 so that J(x+I) will provide as much information on e as possible.

To define the best or optimal interinspection time at the (n+l)st stage, we

shall use the criterion of maximizing the conditional Fisher information about

e, given (J(xl),...,J(x n),xl,...,x n ). More specifically let Fn denote the sigma

algebra generated by (J(x ) ..... ),X1,.... x) and let I(e;xIFn ) denote the

conditional Fisher information of 6 at the (n+1)st stage given Fn . Generally,

I(6;xn+lIFn) depends on 0. Hence, the optimal value of Xn+l is a function of the

unknown parameter e. This problem can be overcome by changing the criterion of

optimality in a suitable manner.

In a Bayesian framework we assume that 6 is a random variable having a specified

distribution function, called the prior distribution. The Bayesian interinspec-
*

tion time xn+1 is a number maximizing the predictive Fisher information i.e.,

EMI(O;X*IF)I > E{i(O;xIFn) (1.1)
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for n=l,2,..., and V x e X, where the expectation is with respect to the posterior

distribution of e given Fn and X is an appropriate design space. x1 is defined

as the value belonging to X such that

E{T(O;x)} E{I(O;x)} V x c X , (1.2)

where the expectation is taken with respect to the prior distribution of 0.

Zacks (1973,1977) discussed this problem when the time-till failure follows

an exponential distribution

F(x,O) = 1 - exp{-ex},

and 0 follows a gamma prior distribution. This case will be studied along with

some other distribution functions F(x,0) and different prior distributions of 8.

It is readily seen that J(xI) is a binomial random variable with parameters

N and F(xl;6). Accordingly, the Fisher information function of F(xl;8) given

1 1x]I is

I(F(X1;0)) = N/{F(x 1 ;)(l-F(xI;0))}. (1.3)

Therefore the Fisher information of 6 given xI is (Khan (1980))

' a 2
I(0;x 1) = I(F(xl;0))(! F(xl;6)) (1.4)

Unfortunately, the conditional distribution of J(x2 ) given F, is not necessarily

binomial under replacement policy A, unless F(x;O) is a negative exponential. This

complication arises due to the fact that at the 2nd stage we have two kinds of

failure distributions - for those components which failed in the previous

interval and were replaced by identical components we still have the failure

distribution F(x,;6), however, for those components which (lid not fail during

(Ox 1 ) the fallure distribution is

S l
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G(x2 ;xl,) = [F(x 1 + x2 ;0) - F(x1 ;8)]/[l - F(x1 ;0)]

Clearly, if F is negative exponential G(x2 ;xl;e) = F(x2 ;8). So

J(x2)jF1 = Y + ZI2
where Y - B(J(x1), F(x2 ;e))

Z - B(N - J(x ), G(x2;xl,8))

and Y, Z are conditionallly independent.

Now I(6;x 2IFl) does not have the same form as (1.4) for general failure dis-

tribution F(x;e). This problem, however, can be overcome by the method used

by Zacks and Fenske (1973). If F(x,6) is the negative exponential distribution,

then

I(e,x 2IF1 ) = I(6,x 2)

and the second stage optimal interinspection time x2 is the value maximizing

E{I(e;x 2)}

where the expectation is with respect to the posterior distribution of e given

F1. Under replacement policy B, on the other hand,

J(x) IF 1 - B(N,F(xn;0) ; n=1,2,...

for all distributions F(x;e). Hence,

l(O;X= (F(X;e))(-! F(x ,e)) 2  (1.5)
nnln De n

Thus, under replacement policy B the problem has the same structure in all the

stages. In the case of negative exponetial distribution the problem remains

the same in both kind of replacement policies.
0:

I
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2. One-Stage Designs

In this section we shall discuss the determination of interinspection times

for the following cumulative distribution functions:

(i) F(x,e) = 1 - exp{-x/e}; the negative exponential distribution.

(ii) F(x,e) = 2(1 + exp{-Ox}) - 1 ; x > 0 , the truncated logistic distribution.

(iii) F(x;e) = (e-l) -l {e • exp{-e- o x } 1 ) ; x > 0 ; the truncated extreme

value distribution.

(iv) F(x,O) having a symmetric density function and e is the shift parameter.

These examples will suffice to show the complexity of the algebraic manipulations

involved for the solution of this problem. Nevertheless the method is straight-

forward and could be applied to any F(x;8).

(i) The negative exponential distribution:

If F(x,e) = 1 - exp{-x/O}; x > 0, 0 > 0, then by equation (1.4)

2 4
I(e;x) = Nx /{e (exp(x/)-l)1 . (2.1)

The design level x maximizing (2.1) is the solution of the equation

exp(x/0){2 - x/O} - 2 - 0

0which is, x = 1.5936 0.

The prior information with respect to a prior distribution G(e) is defined

as the prior expectation of 1(0;x) and is given by

E{I(O;x)} = Nx2 Ee-x/OM 4 (1-e-X/O)11

= Nx 2 E{ E exp{-kx/}1/04 }
i=1

= Nx2 E E{exp{-kx/0}/0 4 1 (2.2)
k=l
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The exchange of summation and expectation in (2.2) is permissible, since the

function is non-negative.

0The Bayes optimal design level, x (G), is a value of x satisfying

e-kx/fe - (4 - kx/20) dG(O) = 0 (2.3)

k=l 0 0

provided the left hand side of (2.3) converges uniformly in x.

Consider the case when G(O) is the inverted gamma distribution with para-

meters (A,m). The corresponding density function g(O) is given by

g(O) 0-m-5 exp(-X/0) ; 0 > 0
r(m)

For this prior distribution (2.2) reduced to

E{l(6;x)} =cx2 F ( + xk)
k=l

= cx 2 K (I + xk/X)' 4

k=l

when c and c' are appropriate constants.

Without loss of generality, we discuss the problem of choosing an x to

maximize

2 m+4f(x) = Z x /(1 + xk)
k=l

The solution x0 will provide the optimal design level xI for all A by the

relationship
*

xI = Nx0

Let,

g(k,x) = x2 /( + xk)" +4

.Ir



7

Lemma 2.1.

(i) Z g(k,x) is uniformly convergent in X E Oc)
k=1

(ii) - f W) = EA- g (k, x)
dx k=l dx

(iii) x 0 -1.5936/(m+2) for large values of m.

Proof.

Each function g(k,x) attains a unique maximum at

x= 2/(k(m+2)) , k=1,2,.

Let,

M~k g(k,\k) = sup g(k,x) , k=1,2,.
x

It follows that

k I k=l k

Thus (i) is proved by the Weirstrass M-test (Widder 1961). By similar arguments

(ii) follows.

To prove (iii) we notice that

Jg(k,x) ,g(k+l,x) V x c (0,x-), k=1,2 ..

Since g(k,x) attains its maximum value at x, = 2/(m+2)k, it readily follows that

for each k=1,2,...

F+ for x c [2/(m+2)k,
g(k,x) (2.4)

t for x c (O,2/(m-2)k)



So if f(x) attains its maximum value at x then

S Eo (0, 2/(m+2))

Tndeed,

g(k,x) < g(i,x) ; k=1,2,...
and

d < x , k=1,2 .... .

According to (ii) one can differentiate under the summation and

d f(x) = 0 is equivalent to
dx

Z {2 - (m.+2)kx} (1 + kx)- m -  = 0 (2.5)
k=-

Let x a (m+2)-  where for each m, 0 < a < 2. The values of x (or a ) can

be determined numerically, for each m from equation (2.5). We show now that f':

large values of m the solution has a simple approximation. For this purpose X'.

establish first that a is a convergent sequence. Indeed, there exists a sub-

sequence and a limit point a such that

a a E (0,2] as v +o'
m

Hence,

- -5

f 2 - k}(m V+ 2 + a k) = 0 V v > 0

Equivalently,
ii +5

n +2+a V

2-a = E (ka -2) V ::+k)mn m y +2+
, k= V

- - - - ~- ---- -- - - -. -- . -. - 5..-)
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Taking the limit as v + + , one obtains the equation

2- a (ak-2)e
-a(k- l ) ,

k=2

or

2 a - e-a[a(2-e -
a  2 1

L (le-a) 2 I ea

this equation is further reduced to

2 - a - 2e - a = 0.

The solution of this equation is approximately a = 1.5936. i.e., a has an

unique limit point. Hence, xmO 1.5936/(m+2), as m-.

(Q.E.D.)

Some values of am, xm0 and xm for various values of m are given in Table

2.1.

The results obtained so far are summarized in the following theorem.

Table 2.1

Values of am , x and x for X=1
m m m,0

f! *
m a x x

m m i,0

0 1.530 .765 .797
1 1.549 .516 .531
2 1.556 .389 .398
3 1.560 .318 .318
4 1.564 .261 .266
5 1.567 .224 .228
6 1.568 .196 .199
7 1.573 .175 .177
8 1.577 .158 .159
9 1.580 .144 .145

15 1.582 .093 .094
20 1.584 .072 .072
+_ _ 1.594 0 0
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Theorem 2.1.

If N components arc workin(, independently with idonti. al failurp dintrihution

F(x,O) = 1 - exp(-x/e)

,- 7 0 a . .t+i, gamma (A, m). n, > 0, pjlo? d"-t,'hb? tfo .. ( 1,,

:irsE stage optimal interinspection ttmc x 10 giVen byIn, ]

* -I
Xm l = am(n$-2)

the "17! ar given in Table 2.1.

'Li) h, truncated lugistic distribution.

We consider the logistic distribution truncated to Lhe left, i.e.,

F(x,O) = 2(1 + exp(-ex)) - I ; x > 0 , e > 0

In this case the failure (hazard) rate function,

-l
h(x) = 0(1 + exp(-Ox))

is an increasing fun-tion of x.

Also according to (1.4) the Fisher information function of 6 given x is

2
l(O,x) = 2Nx exp(-Ox) (2.6)

{l-exp(-Ox){l+exp(-ex)) 
2

The design level x maximizing (2.6) is the unique solution of the equation

-Ox) (26 -1

2 - Ox = Ox(3 - e )(e x-1)

which is xO (u) = 2.!bjI/o.

For a given prior distribution of 0, the expected Fisher information function

is given by

.4
J



E{I(O,x)} = 2Nx2E { e
(l-e

x )(l+e-ex ) 2

2o o (k+j) xO

= 2Nx E E (l)j (j+l)E{ek(
k=l j=O (2.7)

= 2Nx 2 E Z (-l)J(j+l)M0 (-(k+j)x)
k=l j=O

where M denotes the Laplace Steiltjes transform of the c.d.f. of 8. It is

difficult to characterize the design level x which maximizes (2.7) in the

general case. Therefore, consider the special case where 8 has a prior gamma

distribution, G(X,m), with m > 2.

In this case

M (-(k+j)x) = (1 + x(k+j)/k)-m

Hence, without loss of generality we can assume that 1 = , and consider, for

m > 2, the expression
Eo(ox x -m (2.8)

E l(O,x) = cx 2 E F (-l)J(j+l)(l + x(k+j)) - m

k=l j=O

Differentiating with respect to x under the summation signs we obtain

E{l(0;x) } = c E O (-l)J(j+l) 2-x(k+j)(m-2)
x k=l j=0 (l+x(k+j))m+l

Let a = x (m-2) where x is the solution of the equation},,m m m

2 - a (k+j)

z (-l)J(j+l) imn m -1m+l 0 V m , (2.9)

k=l j=l (l + (k+j)ci (m-2) )

obtained by equating the partial derivative to zero. To see why a is a con-

vergent sequence as m-*4 we note that for large m

1, _
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(1 + (k+j)(t (m-2)-) e
4 Inl

2 - a (k+j)
i.e., 1 (--)-(j+-) - 0 for large m

k=1 j=O m(k+j)
C.

2a- -3C -2cc
=>2(- e m)(1 + e m) - a (1 + 2e + e M 0 for large m

ca m 2.1651 for large m

Hence, am 2.1651 as m-+-. As before, when X # 1, we have

x = Xa (m-2)
- I .

m m

In the following table we give the optimal solution in terms of cx and x form m

sm;,!l values of m, as determined by numerical solution of (2.9).

Table 2.2

m c x x =2.1651(m-2) 1

m in mn -

3 2.04687 2.04687 2.1651
4 2.06844 1.03422 1.0825
5 2.08836 0.69612 0.7217
6i 0 2.10172 0.52543 0.5413

9 2.12331 0.30333 0.3093
10 2. 127,8 0.26596 0.2706
15 2.14032 0.16464 0.1665
+- 2.16509 0.0 0.0

I(iii) The truncated extreme value distribution.

)The truncated extreme value distribution is given by4 The truncate extremele distribution -i) give by

I

Si

.. .. . .... .' _ .
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The Fisher information function of 0 at a design level x is

2 -Ox
l(e,x) = Nex exp(-2e )exp(-26x)

-Ox'x -O (2.10)
[e exp(e-ex)-l][l-exp(-e - 0 x ) ]

The design level x maximizing (2.10) satisfies the equation

-z -z2(1 + i/n z)/z = [(l+e)exp(-z)-2]/[(l-e )(e e-Z1)]

where z = exp(-ex). The solution of this equation yields

x = -Cn(.144188)/O = 1.9366/0 (2.11)

In analogy to the previous two cases we may conjecture that if the nrior

distribution of 0 is gamma G(X,m), the optimal design level, at which E{I(6:x)}

is maxirrized, is

x m X(1.9366)/(m-2) for large m.

Theorem 2.2

Suppose that the Fisher information function is of the form 1(6;x) =

akxPexp{-kx}; p > 0, where ak do not depend on a and x; and that I(O;x) is
k0
maximized at x (e) = a/. Furthermorc, a. swnc that

(i) ak xP-(p-xkO)e -O xk  is uniformly convergent in x,
Kk

rn-i -(X+xk) 6
(ii) k a e e is uniformly convergent in 6,

kk

ai k j(lxk+ is uniformly convergent in x,

k (1+xk)ln

then if the prior distribution of O is the gamma G(X,m), E{I(8;x)} is maximized

at Xa/(m-p) for large values of m.

.1_
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Proof. Since I(0;x) is maximized at x = a/0, therefore

I(e;x) - 0 for x = a/6 (2.12)

( ixxk
It follows from (i) that Z ak(p-xkA)e = 0 for x / From

k

assumption (ii) we obtain that

E{I(O;x)} = E ak x
P Eie- Xkf

k

= E ak xP(l + xk/X) -
. (2.13)

k

v. 't,,t ,)sz of generil!ity, assume that X = 1.

Furthermore, from (ili) we get

- E{I(O;x)} = x P-lTa p -(M-p)xk (2.14)
,x k (1+xk)m + l

itot x be the value of x for which (2.12) is equal to zero, and let a = (m-p)x .m m Iln

We thus obtain the equation

kak(Pak)( I +--m k) = 0 V m. (2.15)

k m

Moreover,

a k
0 = a (p-a k)(1 + rn -rn-

k K m rn-p

-a k
ka (Pamk)e for large m

a a for large in

a k)m+l a k

since (t +---- l e Hence, x Aat/(m-p), for large m.
m-p m (Q.E.D.)

*1 i
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Remarks. 1. For the truncated extreme value distribution

Nex 2 exp (2e-ex )e- 20x

I(e;x) =
te exp(-e

- ) - 1][l - exp(-e- O)]

could be written as

I(e;x) = Nx2  Z a-(2+j++v)Ox
j,k,k,q ,v=0

where

_(-2) J(-k)£ (9+1) ve
- q

j,k,R,q,v j! 94! q! v!

2. The conditions (i), (ii), (iii), of Theorem 2.2 could be relaxed after

S II! 2.,. I'-C. e of the series

Eak exp(-Oxk)
k

The following theorem generalizes the last theorem for the prior distribu-

tions belonging to the class of infinitely divisible distributions.

Theorem 2.3.

If the Fisher information function of a i, of the following form

I(O;x) = Ea kxexp(-Oxk) ; p > 0
k

where ak do not depend on 0 or x; and if I(O;x) is maximized at the design level

a/6 and 0 has a prior distribution belonging to the class of infinitely divisible

distributions with parameter m, then E{I(O;x)} is maximized at the design level

x = a/E{0} for large m provided

M (i) Xa P- (p-xkO)exp(-Oxk) is uniformly converqgnt in x.

k k

(ii) Eakg(o) exp(-Oxk) io uniformly oocrgr'nt in 0.
k

(iii) akxP- E(p-xok)exp(-Oxk)} i8 uniformly convergent in x.

(-i -)
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(iv) m Xm iLv a boundJcd s eqz,,mi.

Proof.

Since 1(0;x) is maximized at x = a/O,

((; > 0 for x u/(, (2.16)
(x

Now, according to (ii),

EiI(O;x)l -= Ea k xEle- Ik

k

k EkX p(xk)
kk

where 0(t) exp(-m (t)), such that q,(0) O.

Hence, by (iii)

a E{l(e;x )} = a p + mxk k'(xk)I exp{-mp(xk)} = 0.X--x k
k

Let a = m x . We thus have the equationm m

kax kat

Ea {p + kam '(--- )Iexp(-m (-m)) 0 V m (2.17)

kk m m a

since a= mx is bounded, there exists a subsequence m such that m x,sie m m ia e +o v 0 v mV

converges to a finite limit, say ot', as v '- 4-. Hence, x - 0 as v-*4.

V

Expanding,
2

()= (0) + xip'(0) + 2j "(O) +

we have
k aX a 2 2

m m , 0 + (-2 k 1p(0) +

a (a k)2
=~ a j(0)+

k) ak p'(0) 2+

M m 2m

: i -
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Therefore,
ka

m

exp(-mv (--)) -" exp(-x'ki'(O)) as v ,

Or,

Eak 1P - a'k(- '(U)) exp(-a'k4,'(O)) = 0
k

Hence, a' = a/l-p'(0)) and a - a/1-0'(0)1, which implies that
m

x I a/E{6 for large values of i.

(Q.E.D.)

Remirks:

(i) As the previous examples show, the approximation of x is better ifm

t( =-ml' ((Q i'; r,,nl.i,",', bv -(m-p),' (0).

(ii) Zacks (1973,1977) considered the case wlen

F(x;O) = I - exp(-Ox)

with o - C(0,m) , m-- 2

by numerical restlts it was conjectured that

x = I.' 6 \/(m-2)~m

By the above theorem we see that this is an aysmptotic result for large

values of m. However for small values of m, x a A/(m-2) where a are given inml m m

Table 2.1.

(iv) F(x,O) having symmetric density function.

So far we have discussed the cases when the parameter of interest is a

scale parameter. However, some times we are interested in the shift parameter.

Consider the case where F(x;8) is the logistic distribution with a shift

parameter

F(x;o) 11 + exp(-x-+0)]- , - " < x . , < (3

I .. .* o . ° . .J
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It is readily verified that
Ne- (X-0)

I(e;x)= [D + exp(-x+e) ]2

= NF(x;O)fl - F(x;e)]

!!i --fre 1(0;x) is maximized at 010 median of F(x;0), furthermore, since F(x;c;)

is symmetric, x (0) = 0. The Bayesian estimation of the median of the logistic

distribution was discussed by Freeman (1970). However, dynamic programming

methods were used to obtain sequentially optimal designs, up to three stages,

when the prior distribution of 0 was taken to be the conjugate prior. We shall

consider chis problem from the point of view of maximizing the Fisher information.

For any symmetric c.d.f. F(x;0), the Fisher information function of 0 given

xis

I(8;x) N{_- F(x;0)} /[F(x;0)(l - F(x;0))]

= N f 2(x;0)/[F(x;e)(] - F(x;O))] , (2.18)

where f(x;e) is the density of F(x;0).

Consider the case when f(x;O) is symmetric about x = 0. Note that f(x;o)

is defined on the real line R. Otherwise, the Fisher information function of 0

does not exist. Furthermore,

~~ f(x; 8) - 0 as x +o
dx

We also note that in order that I(0;x) be maximized at x = 0 we need the necessary

conditions that

(i) f'(b;e) = 0

(ii) f"(O;o) < 0

where primre denotes differentlation with respect to x.

This implies that the density f(x;o) is maximized at x = 0. Moreover, if

f(x:r) att:lins a minimum value at x = o, then 1(9;x) is minimized in a neighbor-

hood around 0.

. . .. .. .-- , k_'-'.." _ '. - "-. .... .. . .. . . " . . . . . .. . I
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Accordingly, we consider only those symmetric densities which are bell

shaped (e.g., logistic, normal, etc., commonly known as Logit and Probit models

in bioassay).

Theorem 2.4.

-t I(O;x) be the Fisher infornution funct ion of tiw shift 'arnamcter at

the design Zevel x for distributions F(x;O) sy rit about 0. If"

(i) f'(x;O) < 0 V x > 8,

(ii) f"(6,e) + 2 f(3)(e,e) < 0

Thc'i x = e i a point of maxima of 1TO;x).

(mii) f f(t,e)dt < 1/2[1 - (f(x,0)/f(0,0))2I V x; 8.

0

I(e;x) atl.ainu" its ma i ,'urn , 'a p at x = o.

Proof.

I(0;x) = N f 2(x;O)/IF(x;0)(I - F(x;P))]

Since

I(O;x) -' N f 2(x;O)/[] - F(x;0)] as x- -

we obtain

lim I(0;x) = -2 N lim f'(x;O) = 0

Similarly lim 1(8;x) = 0. Thus, there exists a design level x such that 1(0;x)

is maximized. Now differentiating logI(O;x) and equating to zero we get

2f'(x,O) -f(x;O) + f(x;o) 0

f(x;8) F(x;O) I - F(x;O)

*-- - ,.* ,b ,. ~ . - . .
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If x 0, then f'(x;O) - 0 and F(x;O) = 1 - F(x;0). Therefore x log I(6;x)

= 0 i.e., x = 0 is a point of extremum of I(6;x).

By twice differentiating the log I(0;x) we get

2  f(x;e)f"(x;e) - (f,(x;e))2log 1(0;x) = 2f(x)

ax_ 2 f2 (x;e)

(l-F(x;O))f'(x;6) + f2 (x;O) F(x2)f'(x;.).+ fZ(x;8)

[1 - F(x;e)]
2  (F(x;O))

2

Now,

f'(e;e) 0 , 1 - F(e,e) = F(6;0) = 1/2

we Kt

! log I(e-x) !  f 2(6
- l = 2 + 4 (,8) < 0 by (ii)xxe f(O,0)'

S..e., 1(6;x) attains a local maximum value at x 
= 6.

Now by (iii), we get
X2

F(x;O)(1 - F(x;e)) = (! - (x f(t;,)dt) )

0

2

f (86)

. therefore, 22(K,6 )
4 f2(6,0) ' F(x,O)(l - F(x;O))

1(0,0) > I(0,x) V x > 0.

2
•ial, ' f (x,e) is symmetric about x = 6 one can imply that 1(0,x) is also

symmetric about x = 0. Hence,

1(0,0) > 1(6,x) V x # 0

Therefore 1(6,x) attains its maximum at x 0 (.
(Q.E.D.)
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Corollary.

I X 2
If F'(x,O) = - f exp{- 2 (t-0) }dt . Then I(O;x) is maximized at x = 8.

To see that the ivrmai distribution satisfies the conditiuns of the above

theorem, we see that,

(i) is trivial.

(ii) f"(6,O) = and f (3)(,0) = 3/; (271)3/2

(3) 2 1 1 1f"(0,O) + 2f(6,) .2 o (i-- 1)<S() 3 / 2  1 2 r-

(270 2

(iii) It is well known that (see, for example, D'Ortenzio (1965) or, Johnson

and Kotz (1970) Chapter 13).

x) < [I + I- ex ] V x

Threfore F(x,O) = *(x-6) < r L1  + -

- l f(ee)
Hence,

x 2 1/2f f(t,e)dt < 'I[l - (f(x,8)/f(e,0))2] V x > 8.
0

i.nrce, by the above theorem, the corollary is proved.

In order to construct first stage Bayes optimal interinspection design

'vel, we first consider the simplest case when the prior distribution of 0 is

rectangular (a,h). In this case,

2
0~(, x)} E N -x8

F(x-t)[l - F(x-0)]
"I = N b 2___ .,

JF(x-0)(1I - F(x-6))-N de

a

x-a f2 (y) dy

x-b

b-a

b-a F(y)[1 - F(y)]



22

* a +b
C '. X -- +

2

Hence the first stage optimal Bayes design level is the median of the

Uniform distribution. We can generalize the above result to any symmetric

prior distribution as follows.

In general let g(t) be a symmetric bell shaped density symmetric about e.

Then for the prior distribution of e having density g(e-N) defined over the

real line, the expected Fisher information function of 6 is

2
E{I(8,x)} = N f f(X--) g(O-X) dO

-~F(x-0)(l - F(x-O))g(-)d

2()=NJ f2(y)gx--)d
= N-f F(y){l - F(y)} g(x-y-X) dy

= f I(y) g(x-y-X) dy

where 1(y) = f2(y)/F(y){l - F(y)}

For th sake of maximization of E{I(O,x)1 we see that without loss of generality

we can assume that X = 0. For the following theorem we assume that F(x,O) =
x

f(t- )) dt when f satisfies the conditions of the previous theorem such th.t

I(fx) is also bell shaped.

t,

Theorem 2.5.

t I(O,x) be the Fish-m infonmation function of 6. Suppose that 0 has

-.z prior dietribution G(O-A) defined on R, such that its p.d.f. g is synmnetrici*

about the median X. Then x = X in the point of maxima of E{I(e,x)} provided

f g"(O) dO < 0 (2.19)

4
.1

.. ...- ,. .. , . . ,,i, , I ,,. . .......
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Proof. Assume that X 0. Then

E{I(O;x)} = f I(y) g(x-y) dy

-E{1G3,x) = f 1(y) g' x-y) d

=0 if x= 0=

This follows by considering the fact that g'(.) is an odd function and l(y)

is symmetric about y = 0. Hence, x = A = 0 is an extremal point of the expected

i .i j or.io Lon fuactioi. Furthierinote,

2

f E{I(6;x)) = f I(y) g"(x-y) dy
ax -a•

..e: +K denote the inflexion points of the density P('). Hence,

-? E(I(do x) I(y) g"(-y) dy
"V

=f I(y) g"(y) dy because g" is an even function.

'
-K K

- (f + f + f ' 1(V) g"(V) dy
-_ -K K

-K K
- 2 f I(y) g"(y) dy + f I(y) g"(y) dyS-, -K

-K K
- 2 I(K) f g"' Uy + 1(K) f g"(y) dy

-K

Thi. :-e '1t follows by noting that

g"() < 0 V

> 0 V (-K,<)
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a 2Hence, - Ei(,x)} <1I(K) f g"(y) dy _ 0 = * is the point ol 1hax~IW LI

ax2  x=O -

the expected Fisher information function.

(Q. E.D. )

Example

If 0 - N(0,o ), then

f g"(y) dy = E(O 2 / 4  1
2

=0

Therefore the normal. density satisfies the condition of the above t

3. Oqptimal Design of Two Consecutive Design I:eve] s

W shb-l .,on iaer the cv, .c.t.. ,;'

section. Therefore the results obtained aie applicable under both plicie.s

(A; - v tJ).

If J (X ), J2 (x 2 ) denote the number cf components failing during (0,×!) :n'X

(X1,X2 + x2 ) respectively, :hen

J2(x2 )1J
l (x*),x 2 - B(N,F(x2 ,0))

'1

and the conditional Fisher information of 0 given J (x ) and x2 is
1. 2

N x2

I('x 
2

2 0 (e 1 -7 )

THus, if 0 has an inverted gamma (A,m) prior distribution, theo the

posterior distribution of 0 given J1 (X) is

f(O!j) = C(x1,j)b(jNF(x, 0))-- e- 0 < 0

J,
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It follows that

- 1/0 1 x ( N - j )i-+ x+ 2
)

__2 1 (1-e exp(-
t l2)I (xI) =J,x,}l c'(xlj)x 2f mr+ 5  

0

0 0 -x/0 d
2

'* 2 ' ( e (3. )
=c'(xl,J)x 2  Y Y ()(-L) -- ,rkxF)m.

222k=1 k=0 (X + X (N=j+R,) + k r-

In the special case of j = 0, the optimal second stage interinspection time,

say, x2,0 is the point x at which
20

2is maximized

k=1 (\ + Nx + X k)

1 2

Applying Lemma 2.1 we obtain,

, (A + N x amX (3.2)
x2 ) v; + 2)

where a is given in Table 2.] and a - 1.5936 as m *

Let x2, j denote the second stage optimal interinspection time given that

j number of components failed during (0,x). We shall call an inspection

"redundant" if the number of components failed is zero.

intuitively x 2

This is because no component failed during (0,xl). So we would give the system

more than x units of time so that some of the components may fail and avoid

any redundant i: pcctl 1::

Also if j(>O) number of components failed during (O,x1 ), then the inspection

was not redundant. So the next interinspection time x2 should not be as large

as had (hv .irst inspectlon produced a redundant inspection

x2, j '9, 0 V j 0,1,2,...,N
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On the other hand, if j = N, i.e., if all the components had failed at

the time of inspection, we let the system run too long without any inspection.

Therefore,

x2,N < 1

And if j(<N) number of components failed during (OXl), then the 2nd stage

interinspection time x2 , should not be as small as X2N, i.e.,

X2,N< x2 ,j V j= 0,1,2,...,N.

We can combine the above intuitive results as

>2,N - X2,N-1 " " - x29j 0  
<  xi - x2,jo0+1 .<_ <. x2,1 <_ x2, 0 , ( .3

where j0 is some integer belonging to the set {1,2,...,N-1}. Again, intuitively,

we feel that j0 = .80(N), because the maximal Fisher information of 8 is obtained

at the 80th percentile of the exponential distribution.

The following lemma verifies the above intuitive results.

Lemma 3.1.
t*

E{I(O,x 2 F1 )} is maximized at x2, j where

;'* ~ m A+* - 2, m/

x [A + (N-j)x I  jx 2/(e - )1 (3.4)
2,j m213

and cc 1.5936 as m-+w. (a are given in Table 2.1).m m

Proof.
•f(~ 2 Z (i

E{I(8;x21F)} = C(xlj)x2 kX1 Z ( -+ k2m+4
k~l k=0 (X+x 1(N- J+Z)+kx 2)'~

1'
.. - - - - .-
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[j

2 1 i *
Let f(x) 1x E E ()(-1) where a = x 1 (N - j + t)k (a + xk)me4 ' W ,m

k=l =0 (ai,m

Notice that xI may depend on m. Approximate the function f(x) by using integrals

instead of the summation Z
k=l

Note that there exists a constant c such that
m,j ,.

f(x) = x F (J)( 1) f

Cm. , (a + xk) m +4

Furthermore,

f~x) 2  ( (i£fdk
fLx =0 c E (-I, f m + 4 '

m (a+,m

where c E [0,1). (We are approximating f(x) by choosing c independent of k
m m

and j.) Now,

f dk 1
(af +k m + 4  

x m + 3

c (a +xk) x(m+3)(a ,m + cm itm m

Therefore,
J

f(x) E Z (9)(- 1 )i x
£=0 (m+3)(a Zn + c m X)

dMoreover, xxf(x) = 0 implies the equation

j a + c x - c x(m+3)
; () fm m m

R =0 (a + c x)
im m

Let ym = cx(m+2). Therefore,

j a -
!J ) a£,m Ym 0

2. a M (N-j+t) y m +4
+ m+2 + ;-)

and for large m,

a £ am - Ym
a (N-j)/X m./X ym/X = 0
m= m m

e * e e

-.j _T -L _ _ ..: -Y - --, . , ' ... .. I , Z ? " ..." _- .' .... . . . .. .. . .. . ... .. , ' ....... . . .
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or

E + 1 - + +-je 0

From this equation we obtain

Xl Ym -m / ' j  
- /A -a /A j-i

(I +- (N-j) - -- (i- e -a ) -- " j e m (l-e m / = 0

from which

y x /Am Xl X1 am M

or
, , a A

Ym =\ + xI(N-j) - 1 j/(e m - 1),

_ _ * * ml

mj c (m+ 2 ) I+ X(N-j) xI j/(e - I)]

Now we note that if j = 0, then c =- . Therefore,
m a m

x2, M [X + xI (N-j) - x j/(e - )]

for large values of m.
i, ' (Q.E.D.)

The following table shows that the approximation is close even for small

values of m.

Incidently, it is readily seen that the optimal Bayes interinspection time

b*
x b E(ej x) isX2,j ' 1

J i * -m+l
S()(-i [I + (N-j+£)x1]

xb =0 (3.5)

2,j (m-1) E ()(- 1) IA + (N-j+)x]

Vi=o
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Table 3.1

1 = , N = 1, j 0

m 1 2 3 4 5

x2,0  .79 .54 .41 .33 .27

x2,0  .79 .54 .41 .33 .27

x .516 .389 .312 .261 .224

Note that x is always greater than x as expected.

A - 1 , N=5

0 1 2 3 4 5 a

m 7l 2,j 1.88 1.31 0.95 0.70 0.51 0.36
M ^ 1.549

x. 1.88 1.53 1.10 0.84 0.49 0.48
2*j

x 0.48 0.39 0.33 0.27 0.22 0.18
m5 , 1.567

. 0.48 0.41 0.35 0.28 0.22 0.16

X 0.25 0.22 0.19 0.16 0.14 0.12
Im=9 . 1.574

X ! 0.25 0.22 0.19 0.17 0.14 0.12
2,j

x 0.10 0.09 0.08 0.08 0.07 0.07
m=20 , .583

x 2 0.10 0.09 0.08 0.08 0.07 0.07

- ( + (N-j)x jx(e 1
2," m+2 1 ~~ ) I

xl = 1.5936/(m+2)

* I

-------------
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4. Two Stage Optimal Designs.

By combining the results of Sections 2 and 3 we can construct two stage

optimal designs by using a procedure discussed by Zacks (1973) and (1977).

Now

a 2 -1l(e,x) = N{-1T F(x,O)} {F(x,e)(l-F(x,e))

In order to construct two stage optimal Bayes design we select n components,

II O<n<N,

and perform our experiment at the design level x, using only n components.

Then at the second stage the experiment is performed at the design level x2 for

the remaining N-n components. The construction of the two stage design involves

0 0
finding the vector (no 00 X such that

(N-n)E{I(O;x2 )IF I + nE{I(O;x )} < (N-n0)E l{l(O;x2)IF} + nog{I(Olxl) (4.1)

for all n c {0,1 ...., N), xlX 2  X.
0 0

That is the use of (n0 ,xl,x2 ) gives global maximal Fisher information dur-

ing two stages.

0 0
We obtain (n0,x1 ,x2) by the following steps:

(i) Find the optimal x0 given F1 and n. Since x0 is independent on n,

x and J(xl), define

00g(n,x I1) = E[E{I(O;x 2 )IFI } (N-n) + n I(O;xl)

(ii) Determine no, x 1 such that g(n,x I) is maximized.S0 0 0
(iii) Redefine x0 by usingn 0 and x I and J(X ).

By the lemma (3.1)

x0(n,xlJ(x])) = ci(m+2)- {A + (n-j(x ))x 1 -(e m -1 }

2 1 1
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0
In order to determine n0 , xl, one can use the computer for specified values of
N, X, m. If n = 0 or N, the solution is simple to characterize.

Relative efficiency of the design is defined as follows:

For the first stage, the relative efficiency RE(OIA,m) is

RE(OIX,m) = 1(8;xl)/I(O;x)

I b
where x denotes the Bayes design level for the first stage, i.e.,

x = 1.5936 X/m

For the two stage design the relative efficiency function of 6 is defined in a

b b
similar manner, by using x2, where x2 is given by (3.5).

For numerical values of the relative efficiency function for different

values of m, see Zacks (1973).

5. Kth Stage Optimal Interinspection Times.

In the present section we consider the exponential failure distribution.

If jlj 2 ... 9j. denote the number of components failing during (O,x1),

* K-1 * K
(Xllx 1 + x2), ... E( X E, X1), respectively then, we would like to find the

Ii=l i=l , * ,

(K+l)st stage optimal interinspection time XK+ I given xl2'. K' Xl,."',xK"

Now J (Icij(x ..... I (x ),xl ... . B(N,F(x; )) where JK+l(x)
K *

number of components failing during ( E xi, E xi + x) and the conditional
i=l i=]

Fisher information of e is
N x2 -x/O

I(e;x) -x
S4(1 - ex/O

Now if 6 has inverted gamma (A,m) as the prior distribution, then the posterior

distribution of 6 given (jl,2 ..... xl' Xl'2 .... x) s

.. "S 1 2 Y is

Rom
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f(elj) = C Z b(j.;N,F(x.;) e ; 0 < < +W

where C is a constant. Therefore,

K1 -X/ Nx2 e- dO
E{I(e,x)Ijl =C f Z b(j1,N,F(x ;6)) - e dox/

0 e~ 1(1-e )

K N DK -x.16/ j.i 2 e )X+X)/e
= CNf H f E [1e 1 ) *xl(- )x e0] do

K N2 K -x./6 1
= CN E(.xf fl (1-e 1

i10 i=1 (1-e xO

K*
exp{-1/0( E (N-j.i)% . + x + x)} do.

i=1

-x i j i~ ij i vi *

Now (1 -e E (V X-1) exp{-x 1 v /0}.

Therefore,

K 1 i( v -V'xi/o

Fl (1-e -I-3 e

if K *

21 1

SK

-. '- v 0
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Therefore, K

E{l(O;x)jj} = C' x
2  E ... Z( 1 -2)X K

V 1 V2  VK 1 2  K

K * K *-]./ei 1 v. x. + l(N-ji)x. + x + x)
e e om+5 -x/ e-X/e)d

0 "- K

K Ji K J :v.

C ' x 2 2 = )= 1

! 1

-1/e[E xiIv +N-ji] + X + kx]
x 1 i i i
Ef e m5dO

k=l 0 m+

K2 l j2 3K K Jli
= C x 2  ) . { 1 () N(1)1

k=l V I V2 VK i=l Vi

1K m*

(E xi(Vi+N-j i) + X + kx)

Let L * 
il JK K j*

avi xi(vi+N-j1 ) = C" x Z .. X ( Z 1I)(-1) )
-k=l v 1 VK i=l 1 ( aV. + X + kx) m 4

a

Differentiating with respect to x, we get after equating to zero;

l jK K j. V. K( = +X)-x(m+2)k
E{I(e;x)Ij} = Z E ... Z ( (')(-1) ) = 03, klv 1( +EK a+kx) M+5=0

Let x . be the point for which the above equation is satisfied, define a -m,j m, j

(x .)(m+2).
M'j

e

• 0L",, _ . . .- -,.. ..
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Therefore, -i E(I(O;x)lj} = 0 implies

2jA + K ai) - kK V. =1 V m,jE . [ -I (3 )(_i) -- - = 0

k=l vV0 i=l Vi [(m+2)(. K  + ka m+5
K1= V j

i

a =x(v +N - )
V. I

1

If all Ji = 0, i=1,2,...,K, then trivially,

E(I(O;x)Vil is maximized at xm , i=O

where
K *

C ( +N . x)

,J=O m+2

We thus conjecture that if j # 0, then

K * K * m
Cm + + = i (N- i)x - I xi/(C )

*~ M + ~ 1 im,jm +. . . . . . . ... .

But this result needs to be varified.

Also, we note that if j = (0,0,0. 0, i,O,O,.... 0) then

a a * m
X j m {X + (N-j )x- j x (e - 1)

as vaxifjdm+ " iemm i3i

as varified in Lemma 3.1.

0 - . ... . , "L ' ]. i -. / .. .7
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